1 / 1
" 딥러닝 모델"으로 검색하여,
2 건의 기사가 검색 되었습니다.
-
▲ 서울대학교 컴퓨터공학부 강유 교수[출처=서울대학교 컴퓨터공학부]서울대학교(총장 유홍림) 공과대학(학장 김영오)에 따르면 컴퓨터공학부 강유 교수팀이 개인정보 보호나 보안 등의 이유로 학습 데이터 사용이 어려운 상황에서도 딥러닝 모델의 성능 저하를 최소화하며 경량화할 수 있는 혁신적인 인공지능(AI) 기술을 개발했다.이번 연구 논문은 2025년 4월24일부터 닷새간 싱가포르에서 열리는 세계적 AI 학술대회 ‘ICLR 2025’에 채택된 바 있다.올해로 13회를 맞는 ‘ICLR (International Conference on Learning Representations)’은 기계 학습 및 딥러닝 분야에서 세계 최고 권위를 자랑하는 학회다.프라이버시 보호나 보안 문제로 학습 데이터 접근이 어려운 상황은 현실에서 딥러닝 모델을 훈련시킬 때 겪는 큰 어려움 중 하나다.이를 해결하기 위해 개발된 ‘제로샷 양자화(Zero-shot Quantization, 이하 ZSQ)’는 훈련 데이터 없이 모델을 양자화할 수 있는 기술이다.그러나 기존의 ZSQ 기술은 합성 데이터의 노이즈, 부정확한 특징에 기반한 예측, 어려운 데이터의 잘못된 하드 레이블(Hard Lavel, 1가지 정답만 있는 레이블)이 야기하는 오차 발생 등으로 모델 성능 저하를 불러오는 치명적 한계를 보였다.이에 강 교수팀은 훈련 데이터를 사용하지 않고도 딥러닝 모델의 성능을 유지하며 효과적으로 경량화시킬 수 있는 ZSQ 기술인 ‘SynQ (Synthesis-aware Fine-tuning for Zero-shot Quantization)’ 기법을 제안했다.이는 실제 학습 데이터셋이 없는 환경에서도 종전의 ZSQ 기술에 쉽게 적용할 수 있는 중요한 기법으로 평가받고 있다.연구진은 SynQ의 3가지 핵심 기술로 딥러닝 모델의 성능을 향상시켜 기존 ZSQ의 약점을 극복하는 성과를 거뒀다.먼저 저역 통과 필터(low-pass fil
-
2024-09-27▲ 라마인덱스의 피에르 로익 둘셋(Pierre-Loic Doulcet) 문서분석도구 담당 엔지니어가 26일 서울시 역삼동 GS타워에서 열린 ‘라마인덱스&52g-GenAI 커넥트 데이’에서 발표하고 있다[출처=GS그룹]GS그룹(회장 허창수)에 따르면 2024년 9월26일(목요일) 서울시 역삼동 GS타워에서 ‘라마인덱스&52g-GenAI 커넥트 데이’를 개최했다. 디지털 전환(DX)을 주도하는 혁신 커뮤니티 ‘52g’(5pen 2nnovation GS)과 라마인덱스가 공동 주관했다. 글로벌 AI 엔지니어들이 모여 LLM 활용 노하우를 공유하고 협력하기 위해 마련됐다.라마인덱스&52g-GenAI 커넥트 데이는 거대언어모델(LLM) 앱 개발 솔루션 기업 라마인덱스(LlamaIndex)와 함께 글로벌 AI(인공지능) 트랜드를 공유하는 행사다. 라마인덱스는 LLM을 기반으로 한 애플리케이션을 보다 쉽게 개발할 수 있도록 돕는 종합 서비스 기업으로 업계에서는 랭체인(LangChain)과 양대산맥을 이루며 생성형 AI 혁신을 선도하는 실리콘밸리 기업으로 평가받는다.라마인덱스가 한국에서 워크숍을 개최한 건 이번이 처음이다. 일본 도쿄, 프랑스 파리에 이어 한국의 서울을 선택한 것은 대한민국의 AI 역량과 가능성을 높이 평가했기 때문이다.GS는 기존에 내부 구성원만을 대상으로 진행하던 행사를 외부에 개방했다. 국내 개발자들이 글로벌 AI 생태계와 교류하고, 커뮤니티를 형성할 기회라고 판단해서다.외부 AI 엔지니어 70명을 포함한 100여 명의 참석자는 LLM 기술을 적용한 실무 경험과 업계 동향을 주고받았다.특히 이번 행사는 앤드류 응(Andrew Ng) 미국 스탠퍼드대 교수가 만든 교육 플랫폼 딥러닝 AI(deeplearning.ai)를 통해 전 세계에 공개됐다.응 교수는 세계 4대 AI 석학으로 불리는 인물로 50여 국에서 7만 명이 참여한 상호만남(밋업) 시리즈 ‘Pie
1